

московский завод

пневмоппперат

125130 РОССИЯ, г. Москва, ул. Клары Цеткин, дом 33, Отдел продаж. Тел./факс +7(495) 602-00-93, 602-00-94, 602-00-96; w w w pnevmoapparat . ru; e-mail: info @ pnevmoapparat . ru

НАСОСЫ ГИДРОПНЕВМАТИЧЕСКИЕ ТИПА НП 1/320М ТУ 2-053-0224397-001-90

Насосы с рабочим объемом 1,5 и 7,6 см³ предназначены для нагнетания масла в гидравлические объемы гидропредохранителей для защиты от перегрузки кривошипных прессов, создания и поддержания в них установленной величины давления.

Присоединение: К3/8" – для пневмодвигателя; М16х1,5 – для гидроклапанов (всасывающих и нагнетающих) насоса НП1.

Рабочая среда пневмодвигателя - сжатый воздух давлением 0,1...0,4 МПа очищенный не грубее 10 класса загрязненности по ГОСТ 17433, содержащий распыленное масло вязкостью 10...35 мм²/с при температуре 50°С.

Рабочая среда гидроцилиндра - отфильтрованное минеральное масло вязкостью от 17до 213мм²/с, с номинальной тонкостью фильтрации не грубее 13 класса чистоты по ГОСТ 17216, температура масла от 10° до 50°С.

Климатическое исполнение УХЛ и О, категория размещения 4 по ГОСТ 15150.

Виброустойчивость и вибропрочность должны соответствовать I степени жесткости по ГОСТ 28988.

Сжатый воздух подается к отверстию K3/8" пневмодвигателя.

Дренажное отверстие К1/8" служит для сбора утечек масла через уплотнение плунжера.

Насос будет работать при заданном давлении жидкости до тех пор, пока не наступит равновесие сил от давления сжатого воздуха на поршень и жидкости на плунжер.

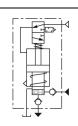
Для того, чтобы сохранить данное гидравлическое давление при дальнейшей эксплуатации пуск насоса в работу производится посредством входного вентиля, расположенного на трубопроводе подвода воздуха.

Насос поддерживает заданное давление автоматически даже при наличии утечек в гидросистеме при условии, что утечки не превышают производительность насоса на данном давлении.

Для крепления насосов на нижнем торце гидроцилиндра предусмотрены 4 отверстия M6.

Резервуар для жидкости должен быть как можно ближе к насосу и обеспечить напор в гидравлическом цилиндре насоса.

Если длина системы труб, соединяющих резервуар с насосом, равна порядка 0,8 м, то внутренний диаметр этих труб должен быть не менее 15 мм, а если больше, то предпочтительно, чтобы их внутренний диаметр был равен не менее 20 мм.


Сечение трубопровода питания насоса сжатым воздухом должно быть достаточным для того, чтобы избежать потери расхода воздуха в трубопроводе. Если длина трубопровода не превосходит 3м, то внутренний диаметр труб должен быть не <12 мм.

При подсоединении к насосу воздушного трубопровода пневматическая часть насоса может быть развернута на любой угол по отношению к гидравлической части.

УСЛОВНОЕ ГРАФИЧЕСКОЕ ОБОЗНАЧЕНИЕ

HΠ 1/320M

ВНИМАНИЕ:

- 1. Перед монтажом в насосе необходимо вывернуть нагнетательный клапан, заполнить полость гидроцилиндра рабочей жидкостью и завернуть.
- 2. Все внутренние поверхности системы труб для воздуха и жидкости должны быть чистыми без окисления. После проверки качества монтажа и установки гидрооборудования необходимо:
 - -наполнить резервуар и трубопровод, соединяющий его с насосом, маслом;
- -двумя или тремя оборотами отвернуть пробку для сброса воздуха из гидросистемы, в которую закачивается насосом масло;
 - -на трубопроводе подвода воздуха к насосу открыть входной вентиль;
- -медленно с помощью редукционного клапана поднять давление воздуха до величин, пока не начнет работать насос;
- -следить за воздухоспускной пробкой пока из под нее не пойдут пузырьки воздуха с маслом. Как только пойдет воздух, пробку завернуть;
- -увеличить давление в гидросистеме с помощью редукционного пневмоклапана до необходимой величины.

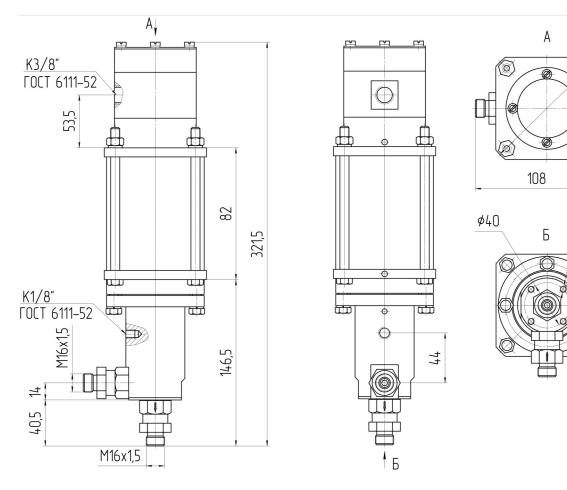
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Попомотры	Нормы для типоразмеров					
Параметры	HΠ1/320M					
1.Номинальное давление масла на выходе, МПа	32					
2.Максимальное давление сжатого воздуха (необходимое для создания номинального давления масла на выходе), МПа	0,4					
3.Минимальное давление сжатого воздуха, МПа	0,1					
4.Номинальная подача, л/мин, не менее	1,0					
5.Точность поддержания давления масла на выходе, %, не более	10					
6.Время подъема давления масла в контрольном объеме до номинальной величины, мин, не более	2,0					
7.Контрольный объем	2000					
8.Масса (без рабочей жидкости), кг, не более	4,9					

Примечание. Точность поддержания давления масла на выходе - относительная величина снижения установленного давления масла, при котором насос автоматически включается в работу.

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

насос гидропневматический НП 1/320М


116

06 🗆

0

M6

4 omb.

Пример заказа насоса гидропневматического с номинальной подачей масла 1л/мин типа НП 1 климатического исполнения УХЛ, категории размещения 4:

НАСОСЫ ГИДРОПНЕВМАТИЧЕСКИЕ типа НП 1/500M; НП 1/1000M; НП 8/250M

ТУ 2-053-0224397-001-90

Насосы с рабочим объемом 1,5 и 7,6 см³ предназначены для нагнетания масла в гидравлические объемы гидропредохранителей для защиты от перегрузки кривошипных прессов, создания и поддержания в них установленной величины давления.

Присоединение: К3/8" - для пневмодвигателя; М16х1,5 и М20х1,5 - для гидроклапанов (всасывающих и нагнетающих) соответственно у насосов НП1 и НП8.

Рабочая среда пневмодвигателя – сжатый воздух давлением 0,1...0,4 МПа очищенный не грубее 10 класса загрязненности по ГОСТ 17433, содержащий распыленное масло вязкостью 10...35 мм²/с при температуре 50°C.

Рабочая среда гидроцилиндра - отфильтрованное минеральное масло вязкостью от 17до 213мм²/с, с номинальной тонкостью фильтрации не грубее 13 класса чистоты по ГОСТ 17216, температура масла от 10° до 50°С.

Климатическое исполнение УХЛ и О, категория размещения 4 по ГОСТ 15150.

Виброустойчивость и вибропрочность должны соответствовать І степени жесткости по ГОСТ 28988.

Сжатый воздух подается к отверстию К3/8" пневмодвигателя.

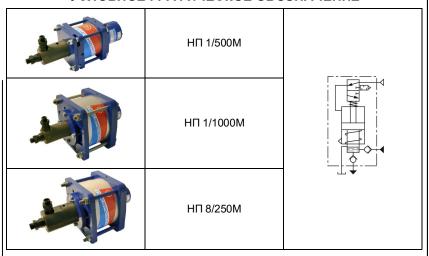
Дренажное отверстие К1/8" служит для сбора утечек масла через уплотнение плунжера.

Насос будет работать при заданном давлении жидкости до тех пор, пока не наступит равновесие сил от давления сжатого воздуха на поршень и жидкости на плунжер.

Для того, чтобы сохранить данное гидравлическое давление при дальнейшей эксплуатации пуск насоса в работу производится посредством входного вентиля, расположенного на трубопроводе подвода воздуха.

Насос поддерживает заданное давление автоматически даже при наличии утечек в гидросистеме при условии, что утечки не превышают производительность насоса на данном давлении.

Для крепления насосов на нижнем торце гидроцилиндра предусмотрены 4 отверстия «d1» (М6 для НП1 и М10 для НП8),а на насосе НП8 – дополнительно 2отв. «d» М10 на боковой стенке гидроцилиндра.


Резервуар для жидкости должен быть как можно ближе к насосу и обеспечить напор в гидравлическом цилиндре насоса.

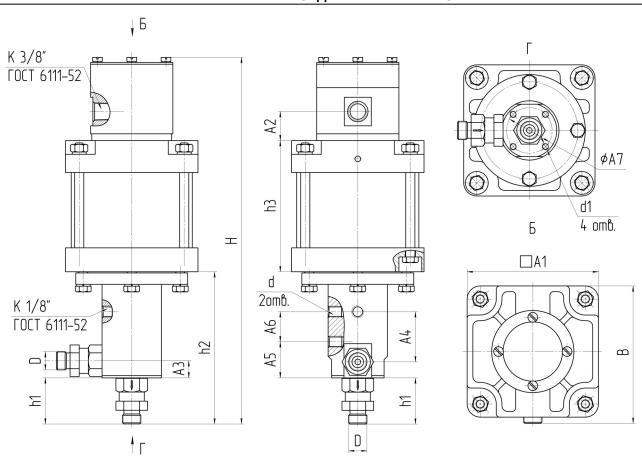
Если длина системы труб, соединяющих резервуар с насосом, равна порядка 0,8 м, то внутренний диаметр этих труб должен быть не менее 15 мм, а если больше, то предпочтительно, чтобы их внутренний диаметр был равен не менее 20 мм.

Сечение трубопровода питания насоса сжатым воздухом должно быть достаточным для того, чтобы избежать потери расхода воздуха в трубопроводе. Если длина трубопровода не превосходит 3 м, то внутренний диаметр труб должен быть не <12 мм.

При подсоединении к насосу воздушного трубопровода пневматическая часть насоса может быть развернута на любой угол по отношению к гидравлической части.

УСЛОВНОЕ ГРАФИЧЕСКОЕ ОБОЗНАЧЕНИЕ

ВНИМАНИЕ:


- 1. Перед монтажом в насосе необходимо вывернуть нагнетательный клапан, заполнить полость гидроцилиндра рабочей жидкостью и завернуть.
- 2. Все внутренние поверхности системы труб для воздуха и жидкости должны быть чистыми без окисления. После проверки качества монтажа и установки гидрооборудования необходимо:
 - -наполнить резервуар и трубопровод, соединяющий его с насосом, маслом;
- -двумя или тремя оборотами отвернуть пробку для сброса воздуха из гидросистемы, в которую закачивается насосом масло;
 - -на трубопроводе подвода воздуха к насосу открыть входной вентиль;
- -медленно с помощью редукционного клапана поднять давление воздуха до величин, пока не начнет работать насос;
- -следить за воздухоспускной пробкой пока из под нее не пойдут пузырьки воздуха с маслом. Как только пойдет воздух, пробку завернуть;
- -увеличить давление в гидросистеме с помощью редукционного пневмоклапана до необходимой величины.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

	Нормы для типоразмеров				
Параметры	ΗΠ1/ 500M	ΗΠ1/ 1000M	НП8/ 250M		
1.Номинальное давление масла на выходе, МПа	50	100	25		
2.Максимальное давление сж. воздуха (необходимое для создания номинального давления масла на выходе), МПа	0,4	0,3	0,4		
3.Минимальное давление сжатого воздуха (необходимое для создания давления масла на выходе 32МПа), МПа	ı	-	0,5		
4.Минимальное давление сжатого воздуха, МПа	0,1				
5.Номинальная подача, л/мин, не менее	0,7	0,5	2,0		
6.Точность поддержания давления масла на выходе, %, не более	10 15				
7.Время подъема давления масла в контрольном объеме до номинальной величины, мин, не более	3,0	3,2			
8.Контрольный объем	2000 6300				
9.Масса (без рабочей жидкости), кг, не более	5,5	8,0	10,0		

Примечание. Точность поддержания давления масла на выходе - относительная величина снижения установленного давления масла. при котором насос автоматически включается в работу.

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

Обозначе- ния		Размеры, мм															
	D	A1	A2	А3	A4	A5	A6	A7	В	d	d1	Н	h1	h2	h3		
HΠ 1/500M	M16x1,5 -	115	25,5	14	4.4			40	120,5		MC	321,5	40.5	400 5	126		
HΠ 1/1000M		180	28,5	14	44	-	-	40		-	M6	338,5	40,5	133,5	129		
HΠ 8/250M		160	160	100		20,3	22	48	35	35	52	-	М	10	360,0	40,0	155,0

Пример заказа насоса гидропневматического с номинальной подачей масла 2л/мин типа НП 8, климатического исполнения УХЛ, категории размещения 4: